5-1 Introduction

Zhonglei Wang WISE and SOE, XMU, 2025

Contents

- 1. Motivation
- 2. Notation
- 3. Recurrent Neural Networks

Motivation

- 1. It is a common task for natural language processing (NLP)
 - Machine translation
 - Sentiment analysis
 - ChatGPT (Chat Generative Pre-trained Transformer)
- 2. For example, find the destination in the following sentences
 - I arrive at Beijing from Xiamen
 - I leave Beijing to Xiamen
- 3 Problems
 - How to convert sentences into features for calculation?
 - What are appropriate models for NLP?

Motivation

- 1. We usually use the following steps for NLP
 - Tokenization (For feature extraction)
 - Embedding
 - Modeling (For analysis)

Tokenization

- 1. Difficulties for Tokenization
 - Some words, including names or rarely used ones, may not be in the vocabulary
 - It is not clear how to handle punctuations, including ",.;:?!"
 - Different tokens may be needed for the same word with different suffixes

 ▷ For example, walk, walks, walked...
- 2. Possible solution: a vocabulary includes
 - Commonly used words
 - Word fragments from which larger or less frequent words can be formed

Tokenization

- 1. For English, tokenization is straightforward
- 2. For example, consider "I arrive at Beijing from Xiamen."
- 3. We can tokenize the above sentence into the following seven parts I / arrive / at / Beijing / from / Xiamen / .
- 4. Then, a vector is assigned to each token according to a vocabulary

One-hot encoding

- 1. In practice, we have a vocabulary of size $N \approx 30,000$
- 2. One-hot encoding can be used to represent each token in this vocabulary
 - A vector of length N
 - Contains 0 but only a single 1, indicating the position of that token in the vocabulary

Remarks on one-hot encoding

1. Disadvantages

- High dimensionality and sparsity: most information is redundant, especially when the vocabulary is large
- Low generality to new words
- Overfitting due to the large dimension of the one-hot encoding
- Cannot model relationship between (among) words, such as "Xiamen University"
- Sensitive to small changes in the vocabulary: adding or deleting a word may change all encoding system

•

Embedding

- 1. We want a new token representation (Embedding)
 - Achieving low dimensionality ($\approx 1,024$)
 - Reflecting relationship between (among) words.
- 2. Possible solutions
 - Word2Vec: CBOW+Skip-gram
 - GloVe: generalizes Word2Vec
 - N-Gram: a probability model
 - TF-IDF
 - BERT

Embedding

- 1. Embedding is a fundamental task for NLP
 - Embeddings are learned from data using various algorithms
 - For example, with embeddings, OpenAI's GPT models can generate more coherent and contextually relevant responses to user prompts and questions.
- 2. Nevertheless, we may not discuss those techniques, and check by yourselves
- 3. In the following analysis, we assume that embedding is done for each word

Models

1. Find the destination of the following sentence

I arrive at Beijing from Xiamen Embedding: $m{x}^{<1>}$ $m{x}^{<2>}$ $m{x}^{<3>}$ $m{x}^{<4>}$ $m{x}^{<5>}$ $m{x}^{<6>}$

Label: $y^{<1>} = 0$ $y^{<2>} = 0$ $y^{<3>} = 0$ $y^{<4>} = 1$ $y^{<5>} = 0$ $y^{<6>} = 0$

2. What are appropriate models for NLP?

Models

- 1. Why not using FNN or CNN?
 - The dimension of embedding may be extremely large
 - Inputs may have different length
 - Specifically, standard NN cannot deal with dependence

Recurrent Neural Network

- 1. A similar concept was proposed in 1980s
- 2. We focus on finding the destination in a sentence
 - Essentially, this is a binary classification task for each word in a sentence
- 3. We have a training dataset, consisting of different labeled sentences
- 4. Different tasks are discussed later

Recurrent Neural Network

1. Suppose we have a sentence

I arrive at Beijing from Xiamen $oldsymbol{x}^{<1>}$ $oldsymbol{x}^{<2>}$ $oldsymbol{x}^{<3>}$ $oldsymbol{x}^{<4>}$ $oldsymbol{x}^{<5>}$ $oldsymbol{x}^{<6>}$

Label: $y^{<1>} = 0$ $y^{<2>} = 0$ $y^{<3>} = 0$ $y^{<4>} = 1$ $y^{<5>} = 0$ $y^{<6>} = 0$

2. We are interested in estimating probabilities $\{\hat{y}^{< i>}: i=1,\ldots,6\}$ for each word in this sentence

Embedding:

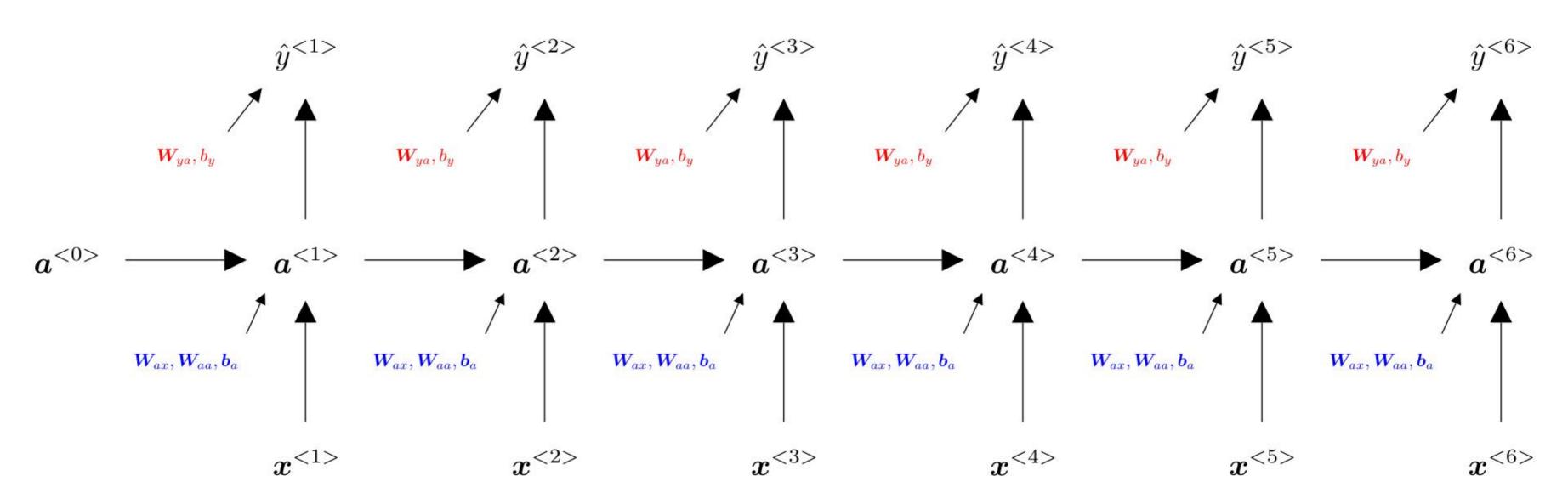
Building block

- 1. Initialize $a^{<0>} = 0$
- 2. Given model parameters $\{W_{ax}, W_{aa}, b_a, W_{ya}, b_y\}$, obtain

$$\mathbf{a}^{} = \sigma_{ax}(\mathbf{W}_{ax}\mathbf{x}^{} + \mathbf{W}_{aa}\mathbf{a}^{} + \mathbf{b}_a) \quad (i = 1, ..., 6)$$
$$\hat{y}^{} = \sigma_{ya}(\mathbf{W}_{ya}\mathbf{a}^{} + b_y) \quad (i = 1, ..., 6)$$

Building block

$$\hat{y}^{\langle i \rangle} = \sigma_{ya}(\mathbf{W}_{ya}\mathbf{a}^{\langle i \rangle} + b_y) \quad (i = 1, \dots, 6)$$

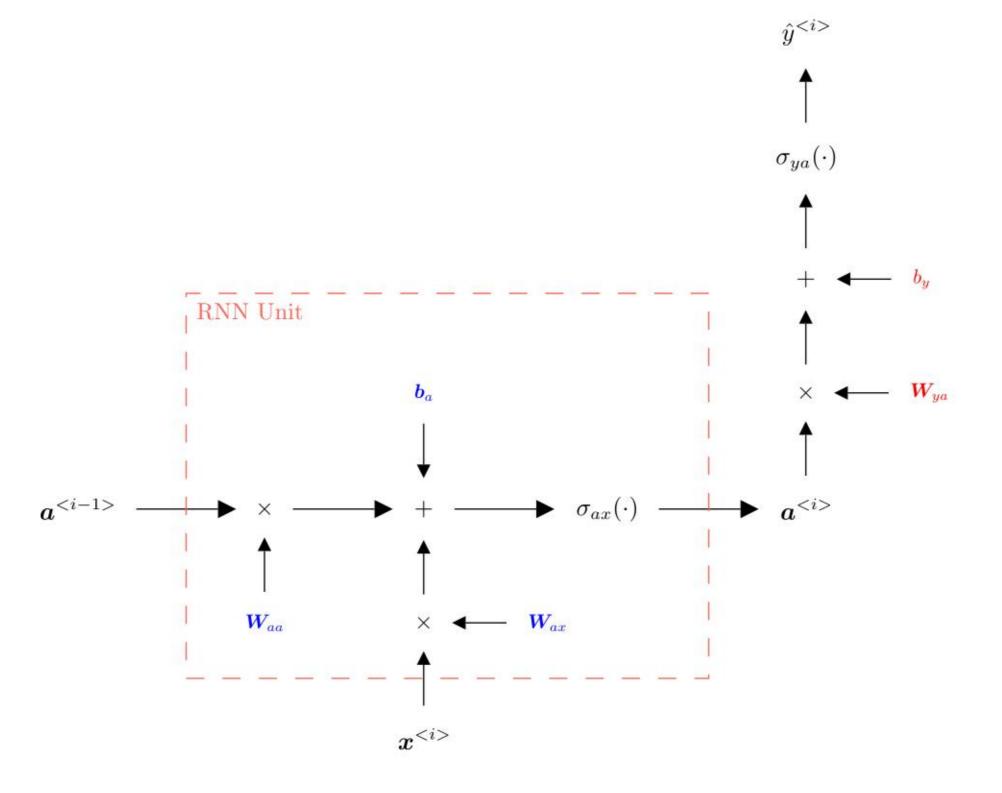


$$a^{\langle i \rangle} = \sigma_{ax} (W_{ax} x^{\langle i \rangle} + W_{aa} a^{\langle i-1 \rangle} + b_a) \quad (i = 1, \dots, 6)$$

Remark

- 1. Since we handle a binary classification problem, cross entropy is used as the loss function
- 2. Backpropagation can be derived based on the forward propagation in the previous slide
 - Remember: sum up all derivatives involving information about the model parameter

Flowchart



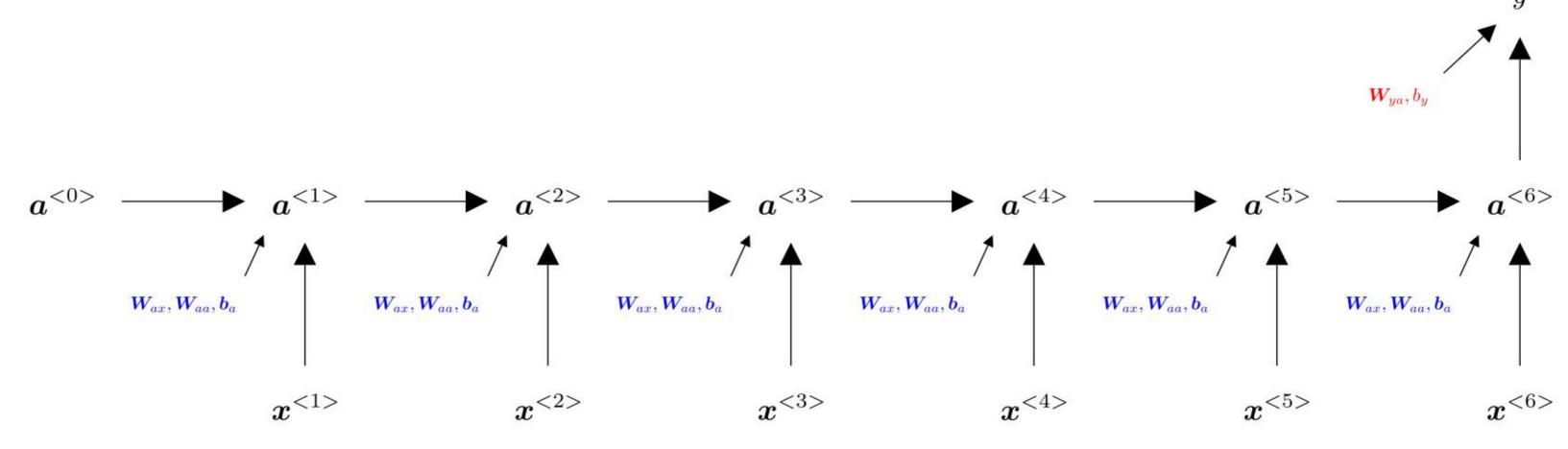
Other examples

- 1. Sentiment analysis (Many to one)
 - Feature: a sentence like "I like this movie very much"
 - Label: score like "5"
- 2. Translation (many to many)
 - Feature: a sentence
 - Label: translated sentence
- 3. Text generation (? to many)
 - Feature: a start of a sentence like "I like"
 - Label (finish this sentence)

4.

Sentiment analysis

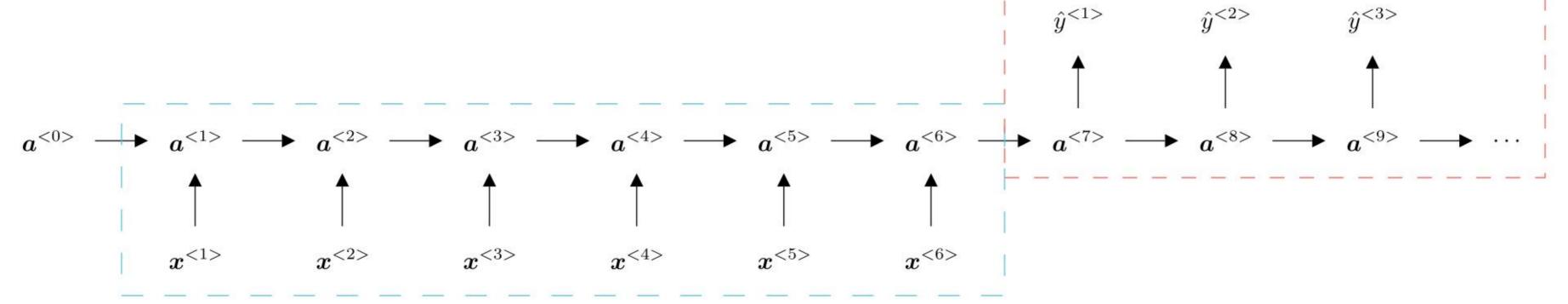
- 1. Feature: a sentence like "I like this movie very much"
- 2. Label: score like "5"



Translation

- 1. Feature: a sentence like "I like this movie very much"
- 2. Label: "我非常喜欢这部电影"

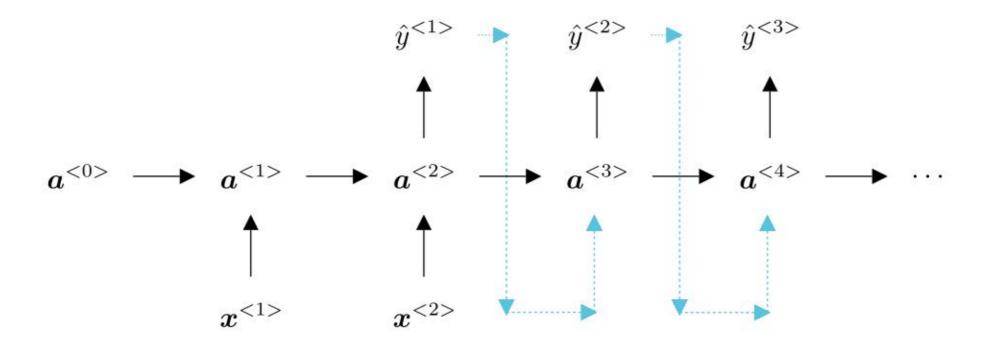
Decoding



Encoding

Text generation

- 1. Feature: a sentence like "I like"
- 2. Task: complete this sentence



Remarks

1. Bengio et al. (1994) pointed out that an RNN cannot capture long-term dependencies since the gradients may either vanish (most of the time) or explode (rarely, but with severe effects).

2. "This makes gradient-based optimization method struggle, not just because of the variations in gradient magnitudes but because of the effect of long-term dependencies is hidden (being exponentially smaller with respect to sequence length) by the effect of short-term dependencies" (Chung et al., 2014)